Oxygen Depletion System

DeOxo is principally used in the production of high purity hydrogen and is also used in the upgrading of landfill gas to pipeline quality gas where allowable oxygen content is generally very low.

DeOxo Process

Our experience with oxidation using a precious metal catalyst goes back to the early years of the company with the supply of large catalytic reactors for the oxidation of hydrogen bromide (HBr) in the purified terephthalic acid (PTA) industry. PTA plants in Montreal, Canada and Altamira, Mexico have used our CaTox units for many years.

​More recently, we are specialized in the valorization of coke oven gas for the primary steel industry. Such gas valorization pathway produces high purity hydrogen from coke oven gas. In the process, oxygen needs to be depleted and it is done by a DeOxo unit. We have several such installations in operation producing 99.99% pure hydrogen.

​Today, we are putting this experience to use in the purification of biogas/landfill gas. One of the impurities in the gas is oxygen, and it is removed through catalytic oxidation of methane in presence of a platinum based catalyst. The DeOxo process operates at a temperature range of 350°C (662°F) to 500°C (932°F). One mole of methane depletes two moles of oxygen in the process. The reaction produces one mole of carbon dioxide (CO2) and two moles of water, as well as heat equivalent to the heat of combustion of one mole of methane.

DeOxo Process Temperature

The oxidation reaction is exothermic, and as the reducing agent is the most prevalent gas constituent, the oxidation reaction is only limited by the amount of oxygen present in the gas. As the DeOxo reaction needs a minimum temperature to proceed and the reaction produces heat, the maximum concentration of oxygen that the DeOxo reactor can accept is limited by the maximum temperature the catalyst can safely accept without any degradation. Taking into consideration the necessary safety factors, we generally limit the catalyst exit temperature at 500°C (932°F).

​In cases where the oxygen content is higher that a single DeOxo stage can accept, the unit will be designed with two catalyst stages with an inter-cooling stage between the two catalyst beds. In the production of sulfuric acid from hydrogen sulfide, the catalytic oxidation unit can have up to four beds, each separated by a cooling stage.  

​The DeOxo unit is generally followed by a thermal swing adsorption (TSA) gas dryer to remove the water vapour produced by the oxidation reaction.